
The Particle in a Box Model

In this model, a particle is placed inside a box with walls defined by infinite potential

energy (1–3). Within the limits of the box, the potential energy zeroes, as represented in

the picture below for the one-dimensional case.
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Figure 1: Scheme for the one-dimensional particle in a box. V is the potential energy,

which is infinity outside the box’s limits.

The respective Schrödinger equation is given by

− ~2

2m
∇Ψ+VΨ = EΨ (1)

where V=∞ outside the length of the box (usually between 0 and L) and V=0 inside the

length of the box. Since the particle’s energy must be defined for all the space available to

it, we only consider the zero-potential energy region for the differential equation we must

solve. This means that only the kinetic energy terms survive. Using Cartesian coordinates

the differential operator is separable, which means that we may treat each dimension of

space independently of one another. For a Ndim-dimensional space we thus get

− ~2

2m
∇Ψ = − ~2

2m

∑Ndim

i

∂2

∂x2i
Ψ =

∑Ndim

i
EiΨ = EΨ (2)

In going from a one-dimensional Schrödinger equation into the Ndim-dimensional case one

must add the respective energy terms, as demonstrated above. The global wavefunction

for the Ndim-dimensional system can be calculated by multiplying the respective one-

dimensional wavefunctions. Isolating the coordinate specific terms into their respective
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equations and making the dependence on a generic one-dimensional coordinate x we finally

reach

− ~2

2m

∂2

∂x2
Ψ(x) = ExΨ(x) (3)

The general solution for this differential equation is the function

Ψ(x)=Asin(kx)+Bcos(kx) (4)

By taking the second derivative of this function, we obtain the energy for the many

possible states,

E=
~2k2

2m
(5)

where from the boundary conditions Ψ(0) = Ψ(L) = 0

k=
nπ

L
, n∈N (6)

The boundary conditions also allow us to determine that B=0, zeroing out the contribu-

tion from the cosine. The only thing left to define is thus the constant A. Because the

probability of finding the particle somewhere in the available space must be 1, then by

integrating the square of the wavefunction we obtain

A=

√
2

L
(7)

Therefore, for a one dimensional box, the Schrödinger equation can be solved to get the

wavefunction

Ψ(x)=

√
2

L
sin(

nπx

L
) (8)

For the energy of the particle in the box to be zero, then the quantum number n must

also be zero. In that case, one can no longer determine the particle’s position from its

wavefunction, in agreement with the Heisenberg uncertainty principle. In the description

above, the wavefunction describes the translation of a particle in a box. The energy of

this particle depends on the quantity k, which is determined by the quantum number of

translation n. In the Ndim-dimensional case the energy is dependent on Ndim translational

quantum numbers. Since different combinations of the quantum numbers ni can lead to

the same energy, we are directed to the definition of degeneracy: Two different states are

degenerate if they have the same energy.

According to the Copenhagen school of quantum mechanics, the square of the absolute

value of the wavefunction is a probability density function

D(x) = |Ψ(x)|2= 2

L
sin2(

nπx

L
) (9)
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It is interesting to note the behaviour of the probability density function. For the

translational ground state (n = 1) the particle is most probably found exactly in the

middle of the box. For the second quantum state available, there are two points with

maximum probability. In general, the number of maxima in the probability density func-

tion matches the quantum number of the respective energy level. Furthermore, for n > 1

there are also points within the box where there is zero probability of finding the particle.

These are called the nodes of the wavefunction. The number of nodes per energy level is

n− 1. Maxima and nodes are all equidistant.

Figure 2: Representation of the probability density function for the quantum levels n = 1

(black), n = 2 (blue) and n = 4 (red) for a box with L = π.

Integrating this function over some given positions allows us to calculate the proba-

bility of finding the particle in a specific part of the box (in a given hypervolume for the

Ndim-dimensional case). This probability is given thus by

P (a, b) =

∫ b

a

D(x)dx=
1

2nπ
[x]|

2nπb
L

2nπa
L

− 1

4nπ
[sin(2x)]|

2nπb
L

2nπa
L

(10)

Applications

The particle in a box is a quantum mechanical description of the translational move-

ment of a quantum particle in an environment free of interactions. The most common

use of the model is to estimate translational energies of an ideal gas. Using (only) the

particle in a box to describe inert monoatomic gases provides a relatively accurate model.

The other known use for the model is to calculate excitation energies on highly con-

jugated polyenes. In this case, the electron is considered to be trapped in a box, which is
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the molecule’s π system.

The Partition Function for a Particle in a Box

The largest use of the particle in a box model is to estimate the translational energy

levels of a molecule in a closed box. These energies, calculated using quantum mechanics,

can be used directly to obtain the partition function for the system:

qtrans=
trans∑

j

exp[−
εtransj

kBT
] (11)

Using the equation above for the energies of the particle in a box, i.e.

Enx,ny ,nz ,...=ε
trans
j (12)

we get

qtrans=
∑
j

exp[−
~2k2j

2mkBT
] (13)

However, the calculation of thermodynamical quantities does not involve directly the

partition function, it requires derivatives of the logarithm of the partition function. By

direct substitution we obtain:

log(qtrans)=log(
∑
j

exp[−
~2k2j

2mkBT
]) (14)

In the three-dimensional case,

k2j=k2nx,ny ,nz=
(n2

xL
2
yL

2
z + n2

yL
2
xL

2
z + n2

zL
2
xL

2
y)

V 2
π2 (15)

We can thus make

A(nx, ny, nz)=
~2π2(n2

xL
2
yL

2
z + n2

yL
2
xL

2
z + n2

zL
2
xL

2
y)

2mkB
(16)

so that

log(qtrans)=log(
∑
nx

∑
ny

∑
nz

exp[−A(nx, ny, nz)

TV 2
]) (17)

The first derivative we need to calculate is

∂

∂T
log(qtrans)=

1∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

∂

∂T

∑
nx

∑
ny

∑
nz

exp[−A(nx, ny, nz)

TV 2
] (18)
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=
1∑

nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

∑
nx

∑
ny

∑
nz

∂

∂T
exp[−A(nx, ny, nz)

TV 2
]

=
1

(TV )2

∑
nx

∑
ny

∑
nz
A(nx, ny, nz)exp[−A(nx,ny ,nz)

TV 2 ]∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

For the heat capacity at constant volume we also need the second derivative of log(qtrans)

with respect to the temperature. We must thus differentiate the above expression once

more to obtain:

∂2

∂T 2
log(qtrans)=

∂

∂T
(
∂

∂T
log(qtrans))

=
∂

∂T
(

1

(TV )2

∑
nx

∑
ny

∑
nz
A(nx, ny, nz)exp[−A(nx,ny ,nz)

TV 2 ]∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]
)

(19)

=

∑
nx

∑
ny

∑
nz
A(nx, ny, nz)exp[−A(nx,ny ,nz)

TV 2 ]∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

∂

∂T
(

1

(TV )2
)

+
1

(TV )2
∂

∂T
(

∑
nx

∑
ny

∑
nz
A(nx, ny, nz)exp[−A(nx,ny ,nz)

TV 2 ]∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]
)

=− 2

V 2T 3

∑
nx

∑
ny

∑
nz
A(nx, ny, nz)exp[−A(nx,ny ,nz)

TV 2 ]∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

+
1

(TV )4

∑
nx

∑
ny

∑
nz

[A(nx, ny, nz)]
2exp[−A(nx,ny ,nz)

TV 2 ]∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

− 1

(TV )4
(

∑
nx

∑
ny

∑
nz
A(nx, ny, nz)exp[−A(nx,ny ,nz)

TV 2 ]∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]
)

2

Another derivative we require is

∂

∂V
log(qtrans)=

1∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

∂

∂V

∑
nx

∑
ny

∑
nz

exp[−A(nx, ny, nz)

TV 2
] (20)

=
2

TV 3

∑
nx

∑
ny

∑
nz
A(nx, ny, nz)exp[−A(nx,ny ,nz)

TV 2 ]∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

The last two derivatives we require are with respect to the logarithm of the variables of

state:

∂log(qtrans)

∂log(T )
=

1∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

∂

∂log(T )

∑
nx

∑
ny

∑
nz

exp[−A(nx, ny, nz)

TV 2
]

(21)
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=
1

TV 2

∑
nx

∑
ny

∑
nz
A(nx, ny, nz)exp[−A(nx,ny ,nz)

TV 2 ]∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

and finally

∂log(qtrans)

∂log(V )
=

1∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

∂

∂log(V )

∑
nx

∑
ny

∑
nz

exp[−A(nx, ny, nz)

TV 2
]

(22)

=
2

TV 2

∑
nx

∑
ny

∑
nz
A(nx, ny, nz)exp[−A(nx,ny ,nz)

TV 2 ]∑
nx

∑
ny

∑
nz
exp[−A(nx,ny ,nz)

TV 2 ]

With all these derivatives the whole system is defined and all state variables can be

calculated.

Particle in a Box in the Classical Limit

The problem of describing the translational energy is that the gap between consecutive

energy levels is very small. This gap can be so small that to reach thermal equilibrium

with the environment, extremely large sets of quantum numbers have to be considered in

the calculation of the partition function. In other words, there is a quasi continuum in

the energy as a function of the quantum numbers (4).

We can take as example a molecule of N2 inside a cubical box. If we assume the system

is in thermal equilibrium, we can estimate the quantum number of the highest energy level

occupied at a given temperature. Using the energy expression (equation 5) and substi-

tuting all constants and the mass for one N2 molecule ([MW ]N2
=28.01×10−3

6.022×1022 =4.65×10−26)

we get that

n2
x+n2

y+n
2
z=1.170×1019TL2 (23)

For a box of dimensions 1 nm3, the sum of the square of the quantum numbers is around

ten times the temperature of the system. Even though there are many combinations

possible, the problem should still be easily tractable with the aid of a computer, if the

temperature is low enough. For a box with dimensions 1 µm3 there is already a sum

of the square of quantum numbers of around ten billion (107) times larger than the

system’s temperature, and for a 1 mL box there is a sum of the square of the quantum

numbers around 1015 times larger than that same temperature. The amount of energy

levels required for the calculation of the partition function becomes absurdly high and

storing of all those numbers is no longer affordable. Furthermore, the energy gap between

consecutive energy levels is ridiculously small (simply put in the values above in equation

5 and see for yourself).
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In the classical limit, the energy of the particle becomes a continuous function of the

quantum numbers. This means that the energy is no longer quantised and the ni are no

longer considered natural but rather real numbers instead. The sum over the quantum

numbers in the partition function becomes an integral in R+:

qtrans=
trans∑

j

exp[−
εtransj

kBT
]=

trans∑
j

exp[− ~2

2mkBT
(
bxn

2
xπ

V 2
+
byn

2
yπ

V 2
+
bzn

2
zπ

V 2
)] (24)

qclassicaltrans =

∫ +∞

0

exp[− ~2bxπ
2mkBTV 2

x2]dx

∫ +∞

0

exp[− ~2byπ
2mkBTV 2

y2]dy

∫ +∞

0

exp[− ~2bzπ
2mkBTV 2

z2]dz

(25)

=
1

2

√
2mkBTV 2

~2bxπ
1

2

√
2mkBTV 2

~2byπ
1

2

√
2mkBTV 2

~2bzπ

=
1

2
6
2

(2mkBTV
2)

3
2

π
3
2~ 6

2

×(bxbybz)
− 1

2 =
1

2
6
2

(2mkBTV
2)

3
2

π
3
2~ 6

2

×(L4
xL

4
yL

4
z)
− 1

2

=(
mkBTV

2

2π~2
)

3
2

V −2=V (
mkBT

2π~2
)

3
2

Note that unlike the partition function given to the ”quantum” particle in a box, the

partition function for the ”classical” particle in a box is only dependent on the volume

and no longer on the shape of the recipient. It can indeed be proved that this result is

independent from the shape of the box (4).

In order to calculate the thermodynamic quantities we require derivatives of the func-

tion log(qclassicaltrans ), as well as that function itself.

log(qclassicaltrans )=log(V ) +
3

2
log(

mkBT

2π~2
) (26)

∂

∂T
log(qclassicaltrans )=

3

2T
(27)

∂2

∂T 2
log(qclassicaltrans )=− 3

2T 2
(28)

∂

∂V
log(qclassicaltrans )=

1

V
(29)

∂

∂log(T )
log(qclassicaltrans )=

3

2
(30)

∂

∂log(V )
log(qclassicaltrans )=1 (31)

Using these we can now calculate the pressure in the system:

P=kBT
∂

∂V
log(qclassicaltrans )=

kBT

V
=
RT

NAV
(32)
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which for N particles yields

P=
NRT

NAV
=
nRT

V
(33)

The heat capacity at constant volume is given by:

CV =2kBT
∂

∂T
log(qclassicaltrans ) + kBT

2 ∂
2

∂T 2
log(qclassicaltrans )=

3R

2NA

(34)

which for N molecules yields

CV =
3

2
nR (35)

The absolute internal energy,

U=kBT
2 ∂

∂T
log(qclassicaltrans )=

3RT

2NA

(36)

which, similarly, for N particles,

U=
3

2
nRT (37)

The absolute entropy for this system is given by,

S=kBT
∂

∂T
log(qclassicaltrans ) + kBlog(qclassicaltrans )=

3R

2NA

+
R

NA

log(V ) +
3R

2NA

log(
mkBT

2π~2
) (38)

for N molecules we obtain,

S=
3nR

2
+ nRlog(V ) +

3nR

2
log(

mkBT

2π~2
) (39)

Finally, we still have the enthalpy and the Gibbs free energy of a single particle,

H=kBT
2 ∂

∂T
log(qclassicaltrans ) + kBTV

∂

∂V
log(qclassicaltrans )=

5RT

2NA

(40)

G=kBTV
∂

∂V
log(qclassicaltrans )− kBT log(qclassicaltrans )=

RT

NA

−RT
NA

log(V )+
3RT

2NA

log(
mkBT

2π~2
) (41)

and the respective N molecule cases:

H=
5

2
nRT (42)

G=nRT (1− log(V )) +
3

2
nRTlog(

mkBT

2π~2
) (43)

These same results for N molecules can be obtained if we calculate the partition

function for N distinguishable particles and then calculate the respective derivatives. In

this case, the total partition function is given by

Z=(qclassicaltrans )
N

(44)
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However, if we want to consider N indistinguishable particles the partition function is

rather given by

Z=
(qclassicaltrans )

N

N !
(45)

Because of the denominator in the latter partition function, for N indistinguishable par-

ticles we need to subtract log(N !)=Nlog(N) to the entropy and to the Gibbs free energy.

All other results remain the same.
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