
Debye Crystal

The Debye Crystal (1) is a direct application of the vibrational partition function for

the calculation of thermodynamic properties for the solid state. Contrary to gases and

liquids, atoms and molecules in a solid phase have very restricted motion. Translation

takes place as a whole group, and the particles have no translation movement of their

own. Rotations are also hindered or inexistent. Vibrational motion also takes place in

groups of many atoms or molecules, constituting what in physics is known as a phonon.

Phonons originate from the quantum mechanical description of vibrational motion, in

which a group (lattice) of particles uniformly oscillates at a given frequency. The Debye

model for lattice vibrations constitutes a semi-classical model that describes properties of

crystals.

For this, consider a one-dimensional crystal lattice, composed by a single chemical

species with an equilibrium interparticle distance of a. Since particles in the solid are

not still but rather move, we may define the vector xi, which gives the instantaneous

displacement in the particle’s coordinates with respect to the equilibrium position due to

vibrational motion (for a one-dimensional crystal xi is a scalar). In principle, a particle in

this lattice will feel a potential resulting from the interaction with all other particles in the

crystal. For simplicity however, one considers that only interactions with the immediate

neighbours are significant, namely interactions up to a distance 2a. The potential energy

between any two particles in the lattice is given by u(r), where r defines the interparticle

distance. Since the particles in the lattice are all the same, then there is only one potential

function to define.

We furthermore consider that the crystal is composed by N particles. N is in principle

a very large number, in the order of magnitude of the Avogadro constant. Due to its

dimension, end- or edge effects on the crystal are negligible. From these definitions we

may furthermore give L = Na as the total length of the crystal.

Using the displacement vectors, the instantaneous distance between two consecutive

particles in the crystal is given by

∆x = a+ xi+1 − xi (1)

Since we are neglecting end-effects and interactions further than 2a apart, then the total

potential energy for the system is given by

U(x) =
∑N

i=1
[u(a+ xi+1 − xi) + u(2a+ xi+2 − xi)] (2)
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Note that each interaction has to be counted only once, therefore we only count the

interactions for particles i + 1 and i + 2. Equivalently we could have accounted for the

interactions with particles i− 1 and i− 2.

a	 xi	

Figure 1: Scheme of a one-dimensional monoatomic crystal lattice to describe the Debye

model for lattice vibrations. The blue points represent the equilibrium positions of the

atomic centers at zero Kelvin. a is the distance between two particles at equilibrium. The

circles show the position of atoms at a given time. This displacement, represented by the

vector xi, is due to vibrational motion.

If all particles are at their equilibrium position, i.e. if all xi = 0, then

U(0) =
∑N

i=1
[u(a) + u(2a)] = N [u(a) + u(2a)] (3)

The total kinetic energy for the particles in the crystal is given by

T =
∑N

i=1

1

2
mẋ2i (4)

This contribution to the Hamiltonian is separable into the sum of many single particle

components, contrary to the potential energy contribution as it was presented above. To

proceed further and still have a system of equations with manageable dimensions, we have

thus to decouple the potential energy into single particle contributions. To do so, we start

by defining

δ = xj+1 − xj (5)

η = xj+2 − xj (6)

which allows one to write

U(x) =
∑N

i=1
[u(a+ δ) + u(2a+ η)] (7)

If we then apply a Taylor expansion,

U(x) =
∑N

i=1

[
u(a) + u′(a)δ +

1

2
u′′(a)δ2 + ...+ u(2a) + u′(2a)η +

1

2
u′′(2a)η2 + ...

]
(8)
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In the limit of small vibrations, we may restrict the above series to quadratic terms.

Furthermore, since the Taylor expansion goes around the equilibrium position (a minimum

in the potential energy surface), then the first derivative zeroes and we are left with

U(x) =
∑N

i=1

[
u(a) +

1

2
u′′(a)δ2 + u(2a) +

1

2
u′′(2a)η2

]
= U(0) +

1

2

∑N

i=1

[
u′′(a)δ2 + u′′(2a)η2

] (9)

Putting everything together, then in the limit of short vibrational motion the total

Hamiltonian for the crystal is given by

H = T + U(x) =
∑N

i=1

1

2
mẋ2i + U(0) +

1

2

∑N

i=1

[
u′′(a)δ2 + u′′(2a)η2

]
(10)

Just as before, the total Hamiltonian is not separable, meaning that the motion of

a given particle is not independent from the motion of other particles. Fortunately, we

know that there exists always a linear combination of the variables that will diagonalize

the total Hamiltonian (2), even if one cannot find such transformation. This means that

there is always a set of variables ξi that are linear combinations of the atomic coordinates,

such that in the new coordinate system the Hamiltonian is a diagonal matrix.

H =
∑N

i=1
Hi =

∑N

i=1

(
U(0)

N
+

1

2
fiξ

2
i +

1

2
Miξ

2
i

)
(11)

In the new system of coordinates, Mi are effective masses, whereas fi are effective force

constants. We note furthermore, that in the limit of small vibrations, the single particle

Hamiltonian is the harmonic oscillator, for which the solutions are well known. The

eigenvalues to this Hamiltonian are given by

εin =

(
n+

1

2

)
hνi (12)

with

νi =
1

2π

√
fi
Mi

(13)

Therefore, via their dependence on fi and Mi, the characteristic vibrational frequencies are

functions of the thermodynamic variable a = L
N

. Before proceeding to write the partition

function for this system we would like to point out the fact that since the Hamiltonian

is separable for one dimension, one may likewise proceed similarly to obtain solutions to

the three-dimensional quantum harmonic oscillator under the same approximations. The

differences are that the characteristic vibrational frequencies should be functions of the
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volume (and not length) and that summations go over three dimensional particles, thus

over 3N − 6. For the rest of the derivation we will consider that the solid is three- and

no longer one-dimensional.

To build the partition function we note that unlike gases or liquids, particles in solids

have fixed positions. These are thus distinguishable. This means that the total partition

function does not require the N ! term that accounts for particle indistinguishability. Thus

the crystal’s partition function is given by

Z = e
U(0)
kBT

∏3N−6

i=1
q (θi) (14)

with

q (θi) =
exp
(
− θi

2T

)
1− exp

(
− θi
T

) (15)

θi =
hνi
kB

(16)

The exponential factor with U(0) in the partition function corresponds to a zero point

energy, in which all particles are at rest. From this analysis we conclude that small

vibrations in a crystal can be decomposed rigorously into independent normal modes of

vibration, being the crystal system a combination of those many subsystems. However,

the quantity we are interested in is the natural logarithm of the partition function, so

that we may apply the machinery of statistical mechanics:

log(Z) = log
(∏3N−6

i=1
q(θi)

)
− U(0)

kBT
≈log

(∏3N

i=1
q(θi)

)
− U(0)

kBT

=
∑3N

i=1
logq(θi)−

U(0)

kB
=
∑3N

i=1
log

exp
(
− θi

2T

)
1− exp

(
− θi
T

) − U(0)

kBT

log(Z) = −
∑3N

i=1

θi
2T
−
∑3N

i=1
log

(
1− exp

(
−θi
T

))
− U(0)

kBT
(17)

Using now the virial theorem annd the equations of motion for the particles, we know

that

m
∂2

∂t2
xj = u′(a− xj) + u′(2a− xj)− u′(a− xj)− u′(2a+ xj) = −dφ(xj)

dxj

which yields, after integration

φ(xj) = u(a− xj) + u(2a− xj) + u(a− xj) + u(2a+ xj) (18)
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At zero displacement,

φ(0) = 2u(a) + 2u(2a) (19)

comparing this with the previous equations, we conclude that

U(0) =
Nφ(0)

2
(20)

Whereas U(0) is the total potential energy when all particles are at rest, φ(0) measures

the interaction of a given particle (they are all the same though) with all other particles

at rest at their lattice points. The partition function can thus be written as

log(Z) = −
∑3N

i=1

θi
2T
−
∑3N

i=1
log

(
1− exp

(
−θi
T

))
− Nφ(0)

2kBT
(21)

Since we take our solid to be composed by N particles, where N is on the order

of magnitude of the Avogadro constant, then the total number of vibrational modes is

almost three-times larger. It is therefore legitimate to assume that there is a continuous

distribution of vibrational frequencies g(ν). With this assumption we go from the realm

of quantum mechanics to the world of classical physics, meaning that we may replace

the summations by the respective integrals. For that purpose we require g(ν)dν, the

number of vibrational modes with frequencies between ν and ν + dν. The total number

of vibrational frequencies is obtained by integration∫ +∞

0

g(ν)dν = 3N (22)

The partition function then becomes

log(Z) = −
∫ +∞

0

θ

2T
g(ν)dν −

∫ +∞

0

log

(
1− exp

(
− θ
T

))
g(ν)dν − Nφ(0)

2kBT
(23)

From this description one sees that in this semi-classical approach, knowing the frequency

distribution function g(ν) is all we need to completely characterize the system thermo-

dynamically. We may now use our statistical mechanics toolkit to derive expressions for

some thermodynamic quantities:

A = −kBT logZ

= kBT

∫ +∞

0

θ

2T
g(ν)dν + kBT

∫ +∞

0

log

(
1− exp

(
− θ
T

))
g(ν)dν +

Nφ(0)

2

(24)

U = −kBT 2

(
∂logZ

∂T

)
V,N

=
Nφ(0)

2
+ kB

∫ +∞

0

θ

2
g(ν)dν + kB

∫ +∞

0

θexp
(
− θ
T

)
1− exp

(
− θ
T

)g(ν)dν

(25)
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CV =
∂U

∂T
= kB

∫ +∞

0

(
θ

T

)2 exp
(
θ
T

)(
exp
(
θ
T

)
− 1
)2 g(ν)dν (26)

S =
U − A
T

= kB

∫ +∞

0

θ
T
exp
(
− θ
T

)
1− exp

(
− θ
T

)g(ν)dν − kB
∫ +∞

0

log

(
1− exp

(
− θ
T

))
g(ν)dν

(27)

For other thermodynamic properties like pressure, enthalpy or Gibbs energy, one must

know how the vibrational frequencies depend on the system’s volume, which requires

knowing the change of variable applied when diagonalizing the Hamiltonian.

The task is now the estimation of the frequency distribution, which is where the

Debye approximation first comes in. Phonons in solids are typically partitioned in two

classes: acoustic phonons with larger wavelength; optical phonons with smaller wave-

length. Acoustic phonons cannot ”see” the crystal structure, and therefore the crystal

behaves as if it were a continuous medium for the vibrations. Taking the crystal to be

an elastic continuum, the asymptotic behaviour of g(ν) for small ν can be deduced. The

Debye approximation consists in taking this behaviour for the whole frequency spectrum.

For a three-dimensional continuum medium, in the limit of low vibrational frequencies,

g(ν) = αν2 =
12πV

vs3
ν2 (28)

where V is the volume and vs is the speed of sound in the medium. As this function tends

to infinity for large enough vibrational frequencies, using this distribution function for all

vibrational frequencies requires a cutoff value, thus

g(ν) =

12πV
vs3

ν2, if ν < νm

0, otherwise
(29)

using the limiting condition for the distribution function, equation 22,∫ +∞

0

g(ν)dν =
αν3m

3
= 3N (30)

then

νm =

(
3N

4πV

) 1
3

vs (31)

By plugging the frequency distribution function estimated by Debye we can then obtain
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explicit formulas for thermodynamic quantities.

A =
Nφ(0)

2
+

12πV

v3s

(kBT )3

h2

∫ νm

0

log

[
1− exp

(
− hν

kBT

)](
hν

kBT

)2

dν

+
12πV

v3s

(kBT )3

h2

∫ νm

0

1

2

(
hν

kBT

)3

dν

=
Nφ(0)

2
+

9RθD
8

+
9RT 4

θ3D

∫ θD
T

0

x2log
(
1− e−x

)
dx

(32)

where the Debye temperature θD is given by

θD =
hvs
kB

(
3NAρ

4πM

) 1
3

(33)

M is the mass per mole of the particle composing the crystal (atomic or molecular weight)

and ρ the density of the crystal. Proceeding similarly for other quantities one obtains,

U =
Nφ(0)

2
+

9RT 4

θ3D

(∫ θD
T

0

x3
e−x

1− e−x
dx+ 2

[
θD
2T

]4)
(34)

S =
9RT 3

θ3D

(∫ θD
T

0

x3
e−x

1− e−x
dx−

∫ θD
T

0

x2log
(
1− e−x

)
dx

)
(35)

and

CV =
9RT 3

θ3D

∫ θD
T

0

x4
ex

(1− ex)2
dx (36)

One may furthermore calculate the chemical potential for the solid phase since

µ =
A+ p0V

N

where p0V is related to the solid, meaning that it is like a Poynting correction factor. If

we consider that in the conditions at which the Debye model apply p0V << A it results

in

µ =
φ(0)

2
+

9kBθD
8

+
9kBT

4

θ3D

∫ θD
T

0

x2log
(
1− e−x

)
dx (37)

Despite being neglected in the calculation of the chemical potential for the crystal, if we

know the chemical potential of a gas phase we may then estimate the vapour pressure

associated with it. Using the theoretical expression we derived for the chemical potential
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of an ideal gas we can make

µcrystal = µgas = −3

2
kBT log

(
2πm

h2

)
− 4kBT log(kBT ) + kBT logP0 + kBT logσ

+
kB
2

∑3Nn−6

i=1
θi + kBT

∑3Nn−6

i=1
log
(

1− e−
θi
T

)
− kBT

2
logπ − kBT

2

∑3

j=1
log

(
8π2Ij
h2

)
(38)

We recall that in the expression above m is the single particle mass (atomic or molecular

weight divided by NA), θi are the vibrational frequencies of the single molecule in the

gas phase and the respective sums (index i) run over all the vibrational modes (3n − 6

for a non-linear n-atomic molecule or 3n − 5 if the molecule is linear). Finally, σ is

the symmetry factor in the rotational partition function and the Ij are the eigenvalues

of the inertia matrix. Note that for both the gas and crystal phases we neglected the

contribution from the electronic partition function. Combining both chemical potentials

we obtain the logarithm of the vapour pressure as

logPvap =
µcrystal
kBT

+ 4log(kBT ) +
3

2
log

(
2πm

h2

)
− 1

2

∑3Nn−6

i=1

θi
T

−
∑3Nn−6

i=1
log
(

1− e−
θi
T

)
+

1

2
logπ − logσ +

1

2

∑3

j=1
log

(
8π2Ij
h2

) (39)

If we now subtract to equation 39 the vapour pressure of the crystal at standard

conditions P0 and T0 one gets

log
Pvap
P0

=
φ0

2kB

(
1

T
− 1

T0

)
+

9θD
8

(
1

T
− 1

T0

)
+ 4log

T

T0

+

(
3

θD

)3
[
T 3

∫ θD
T

0

x2log
(
1− e−x

)
dx− T 3

0

∫ θD
T0

0

x2log
(
1− e−x

)
dx

]

−1

2

(
1

T
− 1

T0

)∑3Nn−6

i=1
θi −

∑3Nn−6

i=1
log

 1− exp
(
− θi
T

)
1− exp

(
− θi
T0

)
⇔

⇔ log
Pvap
P0

=
φ0

2kB

(
1

T
− 1

T0

)
+

9θD
8

(
1

T
− 1

T0

)
+ 4log

T

T0

+

(
3

θD

)3 [
T 3

∫ ∞
0

x2log
(
1− e−x

)
dx− T 3

0

∫ ∞
0

x2log
(
1− e−x

)
dx

]
−
(

3

θD

)3
[
T 3

(
θD
T

)3∫ ∞
1

x2log
(

1− e−
θDx

T

)
dx− T 3

0

(
θD
T0

)3∫ ∞
1

x2log
(

1− e−
θDx

T0

)
dx

]

−1

2

(
1

T
− 1

T0

)∑3Nn−6

i=1
θi −

∑3Nn−6

i=1
log

 1− exp
(
− θi
T

)
1− exp

(
− θi
T0

)
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If we now replace the first set of integrals with the corresponding values,

log
Pvap
P0

=
φ0

2kB

(
1

T
− 1

T0

)
+

9θD
8

(
1

T
− 1

T0

)
+ 4log

T

T0

+

(
3

θD

)3 [
T 3
0

∑+∞

n=1

2

n4
− T 3

∑+∞

n=1

2

n4

]
+ 27

∫ ∞
1

x2log

1− e−
θDx

T0

1− e−
θDx

T

dx


−1

2

(
1

T
− 1

T0

)∑3Nn−6

i=1
θi −

∑3Nn−6

i=1
log

 1− exp
(
− θi
T

)
1− exp

(
− θi
T0

)


The series
∑+∞

n=1
1
n4 is a particular value for the Riemmann ζ function, whose value is also

known. By making such replacement, we finally reach

log
Pvap
P0

=
φ0

2kB

(
1

T
− 1

T0

)
+

9θD
8

(
1

T
− 1

T0

)
+ 4log

T

T0

+
3π4

5θ3D

[
T 3
0 − T 3

]
+ 27

∫ ∞
1

x2log

1− e−
θDx

T0

1− e−
θDx

T

dx


−1

2

(
1

T
− 1

T0

)∑3Nn−6

i=1
θi −

∑3Nn−6

i=1
log

 1− exp
(
− θi
T

)
1− exp

(
− θi
T0

)


(40)

If we now take as approximation T
T0
≈ 1 and

1−exp(− a
T )

1−exp
(
− a
T0

) ≈ 1 where a is any constant, then

we obtain

log
Pvap
P0

=
1

2

(
φ0

kB
+

9θD
4
−
∑3Nn−6

i=1
θi

)(
1

T
− 1

T0

)
+

3π4

5θ3D

[
T 3
0 − T 3

]
The last term on the right-hand-side deserves further analysis. If both temperatures are

close enough, then this term will have a negligible contribution. This can always be

ensured by careful selection of the reference temperature T0. However, carefully choosing

the reference temperature is not strictly necessary if we consider low enough temperatures,

such that the last term in the last equation will have a negligible contribution. This

restriction to low temperatures is necessary for p0V << A. Therefore, we can write

log
Pvap
P0

=
1

2

(
φ0

kB
+

9θD
4
−
∑3Nn−6

i=1
θi

)(
1

T
− 1

T0

)
(41)

Direct comparison of this expression with the Clausius-Clapeyron equation yields the

enthalpy of sublimation for our solid:

∆subh =
1

2

(
R
∑3Nn−6

i=1
θi −NAφ0 −

9RθD
4

)
(42)
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Note that this expression is only valid for low enough temperatures.

Alternatively, we can derive a temperature dependent heat of sublimation by direct

calculation of the derivative of the logarithm of the vapour pressure with respect to

temperature. Then

dlogPvap
dT

=
d

dT

[
φ0

2kBT
+

9θD
8T

+ 9

(
T

θD

)3∫ θD
T

0

x2log
(
1− e−x

)
dx+ 4log(kBT )

]

+
d

dT

[
3

2
log

(
2πm

h2

)
− 1

2

∑3Nn−6

i=1

θi
T
−
∑3Nn−6

i=1
log

(
1− exp

[
−θi
T

])
+

1

2
logπ

]
+
d

dT

[
−logσ +

1

2

∑3

i=1
log

(
8π2Ij
h2

)]
⇔

⇔ dlogPvap
dT

= − 1

T 2

[
1

2

(
−
∑3Nn−6

i=1
θi +

φ0

kB
+

9θD
4

)]
+

4

T
+
∑3Nn−6

i=1

θi
T 2

1

exp
(
θi
T

)
− 1

+
27T 2

θ3D

[∫ +∞

0

x2log
(
1− e−x

)
dx−

∫ +∞

θD
T

x2log
(
1− e−x

)
dx

]

+
9T 3

θ3D

d

dT

[∫ +∞

0

x2log
(
1− e−x

)
dx−

∫ +∞

θD
T

x2log
(
1− e−x

)
dx

]
⇔

⇔ dlogPvap
dT

=
1

T 2

[
1

2

(∑3Nn−6

i=1
θi −

φ0

kB
− 9θD

4

)
+ 4T +

∑3Nn−6

i=1

θi

exp
(
θi
T

)
− 1

]

+
27T 2

θ3D

[
−2ζ(4)−

(
θD
T

)3∫ +∞

1

x2log
(

1− e−
θDx

T

)
dx

]

−9T 3 d

dT
T−3

∫ +∞

1

x2log
(

1− e−
θDx

T

)
dx⇔

⇔ dlogPvap
dT

=
1

T 2

[
1

2

(∑3Nn−6

i=1
θi −

φ0

kB
− 9θD

4

)
+ 4T +

∑3Nn−6

i=1

θi

exp
(
θi
T

)
− 1

]

−27T 2

θ3D

[
π4

45
+

(
θD
T

)3∫ +∞

1

x2log
(

1− e−
θDx

T

)
dx

]

+
27

T

∫ +∞

1

x2log
(

1− e−
θDx

T

)
dx− 9

d

dT

∫ +∞

1

x2log
(

1− e−
θDx

T

)
dx⇔

⇔ dlogPvap
dT

=
1

T 2

[
1

2

(∑3Nn−6

i=1
θi −

φ0

kB
− 9θD

4

)
+ 4T +

∑3Nn−6

i=1

θi

exp
(
θi
T

)
− 1

]

−27π4T 2

45θ3D
+ 9

∫ +∞

1

x3
θD
T 2

e−
θDx

T

1− e−
θDx

T

dx
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If we now transform back the integral

dlogPvap
dT

=
1

T 2

[
1

2

(∑3Nn−6

i=1
θi −

φ0

kB
− 9θD

4

)
+ 4T +

∑3Nn−6

i=1

θi

exp
(
θi
T

)
− 1

]

−27π4T 2

45θ3D
+ 9

T 2

θ3D

∫ +∞

θD
T

x3
e−x

1− e−x
dx⇔

⇔ dlogPvap
dT

=
1

T 2

[
1

2

(∑3Nn−6

i=1
θi −

φ0

kB
− 9θD

4

)
+ 4T +

∑3Nn−6

i=1

θi

exp
(
θi
T

)
− 1

]

−9
T 2

θ3D

∫ θD
T

0

x3
e−x

1− e−x
dx

Comparing the latter expression with Clausius-Clapeyron’s

d

dT
logPvap =

∆subh

RT 2
(43)

We obtain

∆subh =
R

2

∑3Nn−6

i=1
θi −

φ0NA

2
− 9RθD

8
+ 4RT +R

∑3Nn−6

i=1

θi

exp
(
θi
T

)
− 1

−9RT 4

θ3D

∫ θD
T

0

x3
e−x

1− e−x
dx

(44)

This expression is more general than the previous one, as it includes now three temperature

dependent terms.

As might be seen, many of the thermodynamic quantities can be obtained once some

non-trivial integrals are solved. The integrals involved in the calculation of the heat

capacity and internal energy are commonly known as Debye integrals. Their solution was

unknown for many years and therefore only approximated solutions were used. Now-a-

days it is known that these integrals are solved analytically by polylogarithm functions (3).

For the heat capacity integral we have∫ t

0

xk+1 ex

(1− ex)2
dx = (k + 1)!ζ(k + 1)−

∑k+1

m=0

(k + 1)!

m!
xmLik−m+1(e

−t) (45)

where Lis is the polylogarithm function and ζ is the Riemann zeta-function (previously

mentioned). Since both θD and T are temperatures, these values are always positive.

Therefore, the arguments to the polylogarithm are always positive, which means that the

argument to the polylogarithm involved in the calculation of heat capacities is a positive

number smaller than one. We therefore expect no problem in the calculation of heat

11



capacities. For the other Debye integral,∫ t

0

xk
e−x

1− e−x
dx = (−1)kk!ζ(k + 1)−

∑k

m=0

[
(−1)k−m+1 k!

m!
xmLik−m+1(e

t)− tk+1

k + 1

]
(46)

the argument to the polylogarithm can be problematic, since Lis(x) is complex for x > 1.

To overcome this difficulty, we approximate the integral by its low temperature value:

limT→0

∫ θD
T

0

x3
e−x

1− e−x
dx =

∫ +∞

0

x3
e−x

1− e−x
dx =

π4

15
(47)

Finally, there is still the integral involved in the calculation of the Helmoltz energy. This

integral can be calculated using integrals involved in the calculation of the overlap matrix

in electronic structure calculations. Using the series representation of the logarithm

log(1− x) = −
∑+∞

n=1

xn

n
(48)

then

xmlog(1− e−x) = −
∑+∞

n=1

xme−nx

n
(49)

and the integral we want to solve becomes∫ t

0

xmlog(1− e−x)dx = −
∑+∞

n=1

1

n

∫ t

0

xme−nxdx (50)

From the Atomic Orbital (AO)-integrals we know that∫ +∞

0

xme−nxdx =
m!

nm+1
(51)

∫ +∞

1

xme−nxdx = Am(n) (52)

and ∫ +∞

a

f(x)dx = a

∫ +∞

1

f(ax)dx (53)

Placing all results together yields finally∫ t

0

xmlog(1− e−x)dx =
∑+∞

n=1

1

n

[
tm+1Am(nt)− m!

nm+1

]
(54)

With the integrals specified, we have all quantities required for the calculation of thermo-

dynamic properties of crystals.
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