
Statistical Thermodynamics

From Micro to Macro

Consider an isolated ensemble of molecules confined to a recipient of constant volume

V . This system is isolated, thus the number of particles is constant and equal to N .

Furthermore, the system has a constant total energy E. If the system is at equilibrium,

then the energy distribution in these conditions for this system has to be uniform: The

probability of finding a molecule with energy E ′ 6=E is always zero. Such a system is called

a microcanonical ensemble (1).

In our molecular ensemble, all microstates are equally probably and thus the proba-

bility density of finding the ensemble in a given macrostate is simply

p=
1

Ω

where Ω is a function of E, N and V and gives the statistical weight of a configuration or

macrostate. If an ensemble of molecules has several possible microstates, Ω represents the

probability of reaching a macrostate composed of a combination of microstates (2). Note

that even though the system has a constant energy E, there might be special constraints

at the molecular level conditioning the distribution of molecules among their molecular

levels. This does not restrain the system from having total energy E.

Ω consists on the total number of possible combinations we can use to distribute N

particles among m accessible molecular levels, such that the total energy of the resulting

ensemble is E and it can be calculated as

Ω=
N !

n0!n1!...nm!
(1)

ni is the number of particles occupying the energy level i. Therefore, the statistical weight

Ω measures how often a given set of microstates is visited by the molecular ensemble.

According to Boltzmann, the entropy of a system in a given configuration is given by

the logarithm of Ω multiplied by a constant. This constant is defined as the Boltzmann

constant.

S=kBlog(Ω) (2)

The microcanonical ensemble can be seen as a collection of an extremely large number

of smaller isolated systems in many possible (accessible states) in a container with fixed

volume and with a fixed energy (3). The microcanonical ensemble, also known as the

NV E ensemble is defined by equation 1.2.
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If instead of considering an isolated system we consider that our system is in thermal

equilibrium with a heat bath at constant temperature (we fix the temperature to T instead

of the energy to E), we obtain a canonical ensemble (1). This system can be seen as a

collection of several microcanonical subensembles of different energy Ei. Note that the Ei

refer to ensemble energies and have nothing to do with molecular energies. The volume is

still fixed to V and the number of particles is also constant and has the value of N . The

system is therefore closed. Because the energy is no longer fixed, its probability density

is no longer uniform and different parts of the system might have different energy Ei.

The number of ensembles with energy Ei is Ni and therefore the probability of finding an

ensemble with total energy Ei is pi = Ni
N

. Since the total number of particles/ensembles

is constant,

N=
∑

i
Ni (3)

E=
∑

i
NiEi (4)

One may similarly define the probability of finding the ensemble in a given macrostate.

The problem is now instead that several possible macrostates are accessible. To determine

the properties of the system we should characterize the most probable macrostate. Finding

the most probable macrostate requires finding the maximum of Ω with respect to Ni given

the particle and energy conservation laws. Because the number of particles is extremely

high, we can instead maximize the logarithm of Ω with the same results. The function to

maximize is thus

logΩ = log(N !)−
∑

i
log(Ni!) ≈ NlogN −N + 1−

∑
i
Nilog(Ni) +

∑
i
Ni!−m

logΩ = NlogN −
∑

i
Nilog(Ni) + 1−m

If we solve the maximization problem under the constraints of equations 1.3 and 1.4 (using

the method of Lagrange multipliers) we verify that

pi=
ni

N
=

gie
− Ei
kBT∑

jgje
−

Ej
kBT

(5)

where an extra factor gi was added, which accounts for the degeneracy of the energy level

i. The degeneracy simply takes in consideration that different energy levels might have

the same energy and may therefore be all coupled together. We may therefore define

degenerate states as those that are described by different set of quantum numbers n, l, ...

and n′, l′, ... but that have the same energy.
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The function pi is the probability of finding a particle in a given energy level, and is

known as the Boltzmann distribution.

The sum over all states in the denominator of the probability

Z ′ =
∑

j
gje
−

Ej
kBT = e

− E0
kBT

∑
j
gje
−
Ej−E0
kBT (6)

is the partition function, which is the thermodynamic state function of a canonical ensem-

ble. This means that all thermodynamic state functions can be obtained by knowing Z ′.

At a certain temperature, the partition function measures how many states are accessible

to the system. Depending on the temperature, the partition function can assume very

large values.

If the first energy level is considered to be the reference (with zero energy) then,

Z ′ = g0 +
∑

j
gje
−
E′j
kBT (7)

In this perspective, the partition function shows the ability of the system to populate

states other than the state of lowest energy (2). This is naturally dependent on the

difference of the energy levels with respect to the ground state and their degeneracy, and

we may write E
′
j = Ej − E0. The larger the density of states close to the ground state,

the more more states can be populated, and the larger is the partition function.

Finally, if we consider a system with fixed volume and constant temperature but

instead of fixing the number of particles we fix the chemical potential of all components

(the number of particles is thus variable) we obtain a grand canonical ensemble (1). This

system can exchange both heat and matter with the surroundings and it corresponds to

an open system in the thermodynamical sense. The partition function is now given by

Ξ =
∑

j
gje
−

(Ej−
∑
kNj,kµk)

kBT (8)

where µk is the chemical potential of the species k.

Note that in all three cases there are three variables being fixed (1) and if at least

one of these constants cannot be fixed, the system cannot be at equilibrium and therefore

cannot be fully described by time-independent state functions.

Even though from the definitions it might seem like a microcanonical ensemble is not

related to the macrocanonical, it can be shown that all three ensembles are interrelated

and can be used equivalently to solve different problems (4). This means that sometimes

it might be convenient to solve a problem using a grand- or macrocanonical ensemble,

whereas for some problems the micro- or the canonical ensembles are more practical. To
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aid this view, one can see the macrocanonical ensemble as a collection of canonical systems

and a canonical ensemble as a collection of microcanonical ensembles. It is also possible

to define even more ensembles, which might prove to be more practical to solve some

specific problems. The three ensembles above mentioned are however the most common

ones.

A Toolkit

The canonical partition function defined in the previous section is valid for systems

of distinguishable particles. If however we have a system of identical particles we rewrite

the canonical partition function as (4)

Z=
Z ′

N !
(9)

Note the distinction between Z ′ and Z: the former is the partition function for N distin-

guishable particles, whereas for the latter partition function the particles are considered

indistinguishable. If we furthermore consider that there are no particle interactions we

may furthermore write

Z=
QN

N !
(10)

where Q refers to the partition function of a single molecule. Note that if there are sub-

sets of indistinguishable particles the denominator becomes the product of the respective

factorial terms. This means that if a system is composed by N1 particles of molecule M1

and N2 particles of molecule M2 then the denominator is N1!N2! (instead of N !). Particle

indistinguishability has to be accounted by brute force because it is a quantum mechanical

concept. Classically, it would be possible to distinguish all particles.

Similarly to the partition function for N molecules, the single molecule partition func-

tion Q is given by

Q=
∑
j

gjexp[−
εj
kBT

] (11)

The index j runs through all the quantum mechanical energy levels of the single molecule.

As discussed in another document (Quantum Mechanical Basis), the energy levels εj of

a molecule can be split in four main contributions: translational; rotational; vibrational;

electronic. Therefore

Q=
∑

j∈trans

gjexp[−
εj
kBT

]
∑
k∈rot

gkexp[−
εk
kBT

]
∑
l∈vib

glexp[−
εl
kBT

]
∑
m∈el

gmexp[−
εm
kBT

]

=(qtrans)(qrot)(qvib)(qel)

(12)

4



There is still the nuclear spin contribution to the energy, but this usually cancels out

in statistical mechanical calculations and it is also very well separated from the four

main energy contributions. Consequently, nuclear spin is neglected in our treatment

here. Equation 1.12 is very practical, as it gives a prescription on how to obtain (single)

molecule partition functions, which might be use to estimate thermodynamic properties

of large ensembles of molecules. To build the connection between statistical mechanics

and thermodynamics we must first as ourselves what is the average energy (Ē) of the

molecules in a given system. According to the definition we have

Ē=

∑
jεjnj∑
jnj

=
∑

j
εj

nj∑
knk

=
∑

j
εj
nj

N
=

1

Q

∑
j
εjexp[−

εj
kBT

] (13)

This expression can be easily rewritten into

Ē=kBT
2 ∂

∂T
log(Q) (14)

The total energy of a system with N particles, its internal energy, can be defined from

the average energy as

U=NĒ=NkBT
2 ∂

∂T
log(Q)=kBT

2 ∂

∂T
log(QN) = kBT

2 ∂

∂T
log(Z) (15)

From the internal energy we can get the heat capacity at constant volume,

CV =2kBT
∂

∂T
log(Z)+kBT

2 ∂
2

∂T 2
log(Z) (16)

Then using the second-law of thermodynamics, for a closed system

S − S0 =

∫ T

0

CV

T ′
dT ′ (17)

which yields

S=kBT
∂

∂T
log(Z)+kBlog(Z) (18)

Since we are dealing with a system of non-interacting particles, we can define the heat

capacity at constant pressure as

CP=CV +R = 2kBT
∂

∂T
log(Z)+kBT

2 ∂
2

∂T 2
log(Z) +R (19)

According to the definition, we then have access to the system’s enthalpy:

H=kBT
2 ∂

∂T
log(Z)+kBTV

∂

∂V
log(Z) (20)
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From these definitions we can then derive the Gibbs free energy and the Helmoltz energy

G=kBTV
∂

∂V
log(Z)−kBT log(Z) (21)

A=− kBT log(Z) (22)

Finally we still have the system’s pressure

P=kBT
∂

∂V
log(Z) (23)

Note that the expressions above are valid for single molecules or for large molecular

systems. Obtaining the thermodynamic limit requires one to rescale the values accord-

ingly.

It is interesting to venture in the laws of classical thermodynamics using the concepts of

statistical mechanics. As suggested in (2), and using our definition above for the internal

energy, U=
∑

iNiEi, we can build the total differential for this quantity

dU=
∑

i
NidEi +

∑
i
EidNi

For reasons that will later become clearer, the first term can only come from pressure or

volume changes in the system. It is thus associated with mechanical work. The second

term accounts for changes in the energy level populations. This can be achieved using

changes in temperature. This second term results from the system taking energy from

the its surroundings, being associated with heat transfer.
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