
Harmonic Oscillator (1)

After solving the electronic Schrödinger equation, one obtains, according to the Born-

Oppenheimer approximation, an electronic potential on which the nuclei in a molecule

move. Using this potential function, we can then solve the nuclear Schrödinger equation to

obtain the wavefunctions describing molecular vibrations, rotations and translations. The

problem is that the electronic Schrödinger equation is solved approximately and a properly

analytic form for the electronic potential is not known. We are aware of the function’s

shape and we even know the value of this potential for any arrangement possible of the

nuclei to almost the finest of accuracies. But a proper analytical function is not known,

not even for the simple diatomic cases.

It is in principle possible to fit some calculated points of the electronic potential to

a given functional form. Examples are polynomials (for the region around a stationary

point), the Morse potential or the Lennard-Jones potential. Using these functional forms,

solutions to the nuclear Schrödinger equation might then be sought. This is however only

feasible for small molecules, which do not contain many atoms. For large molecules it be-

comes almost impossible to calculate enough points in all possible directions to accurately

fit the potential energy surface on which the nuclei move and a different approximation

has to be used. Furthermore, solving the resulting differential equation might prove to be

an herculean task. A way out of this problem is to use the harmonic oscillator approxima-

tion. This assumes that at normal conditions and if the temperature is low enough, the

molecular vibration is located mostly at the lowest vibrational levels for each oscillator

and a parabolic potential might be used to good accuracy.

The Nuclear Equation for Polyatomics (1,2)

In the current section we will derive the equations needed to determine molecular

vibration. Instead of isolating vibrations from rotations and translations, we will solve

the complete nuclear Schrödinger equation approximately. The effects of translation and

rotation are discussed in the end of the section.

Let the atoms in the polyatomic molecule be described by the following set of cartesian

coordinates:

r̄k = āk + d̄k (1)

where āk is the vector pointing to the equilibrium position of atom k and d̄k is a vector
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describing displacements around the equilibrium position. Alternatively we can write

these vectors as 
rkx

rky

rkz

 =


akx

aky

akz

+


dkx

dky

dkz

 (2)

We can furthermore define mass-weighted displacements as

q̄k =
√
mkd̄k (3)

The kinetic energy operator in the Schrödinger equation is rewritten in terms of second

derivatives of r̄k. We wish however to express the kinetic energy operator (or in fact the

Schrödinger equation) in terms of the mass-weighted vectorial base. For that, and taking

the component over x as example,

∂

∂xk
=
∂akx
∂xk

∂

∂akx
+
∂dkx
∂xk

∂

∂dkx

Since the vector āk is just describing the equilibrium position of atom k, then it is a

constant. Furthermore, from the change of coordinates we get

∂

∂xk
=

∂

∂dkx
=
∂qkx
∂dkx

∂

∂qkx
=
√
mk

∂

∂qkx

We can proceed similarly for the y and z components. Using the former result we can

therefore rewrite the kinetic energy operator.

T̂ = − ~2

2m

∑Nn

k=1

(
∂2

∂x2k
+

∂2

∂y2k
+

∂2

∂z2k

)
= − ~2

2m

∑Nn

k=1
m

(
∂2

∂q2kx
+

∂2

∂q2ky
+

∂2

∂q2kz

)

T̂ = −~2

2

∑Nn

k=1

(
∂2

∂q2kx
+

∂2

∂q2ky
+

∂2

∂q2kz

)
(4)

The summations run over all Nn atoms in the molecule. Since we do not know a priori

the analytical form for the electronic potential, we can directly express the potential as a

MacLaurin series in terms of the new coordinate system:

Eel ({q̄k}) = E0
el +

∑3Nn

i=1

(
∂Eel
∂qi

)
|
qi=0

qi +
1

2

∑3Nn

i,j=1

(
∂2Eel
∂qi∂qj

)
|
qi,qj=0

qiqj + ...

Assuming the displacements are not so large to take the molecule out of the equilibrium

geometry, then the first derivatives of the potential zero out. Furthermore, since V0 is
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simply a constant, which may actually be absorbed into the system’s energy, then we

obtain

Eel ({q̄k}) ≈
1

2

∑3Nn

i,j=1

(
∂2Eel
∂qi∂qj

)
|
qi,qj=0

qiqj (5)

The last expression is commonly known as the harmonic oscillator approximation.

The approximate total Hamiltonian for a polyatomic molecule written in mass-weighted

coordinates is then

H = −~2

2

∑Nn

k=1

(
∂2

∂q2kx
+

∂2

∂q2ky
+

∂2

∂q2kz

)
+

1

2

∑3Nn

i,j=1

(
∂2Eel
∂qi∂qj

)
|
qi,qj=0

qiqj (6)

Looking at this Hamiltonian, one easily sees that it is not separable due to the elec-

tronic potential energy term. The effort now goes into making this term also separable.

For that it is more advantageous to go to a matrix formulation of the Hamiltonian oper-

ator.

In the mass-weighted basis, the momentum operator can be written as

p̂ = −i~
(

∂

∂qkx
+

∂

∂qky
+

∂

∂qkz

)
= −i~∇̄

Using a vector definition for the momentum we can rewrite the kinetic energy operator

in a matrix form:

T =
1

2
p̄>p̄ (7)

where p̄> is the transposed vector. Similarly, we can put all the elements
(
∂2Eel
∂qi∂qj

)
|
qi,qj=0

in a matrix F such that in the harmonic oscillator approximation

Eel ({q̄k}) =
1

2
q̄>Fq̄ (8)

Note that in this nomenclature we define the vectors q̄ and p̄ as the hyper-vector containing

all the q̄k and p̄k one after the other, i.e.

q̄ =



q1x

q1y

q1z

q2x

...

qNx

qNy

qNz


p̄ =



p1x

p1y

p1z

p2x

...

pNx

pNy

pNz


(9)
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These vectors have therefore dimension 3N . In matrix form the Hamiltonian is rewritten

as

H =
1

2
p̄>p̄+

1

2
q̄>Fq̄ (10)

One may then proceed to diagonalize the matrix F, obtaining its eigenvectors L and the

respective eigenvalues (f).

L>FL = f (11)

Since the matrix of eigenvectors forms a unitary transformation, the following relations

are true:

L>L = LL> = (L>)
−1

(L)−1 = (L)−1(L>)
−1

= I (12)

where I is the identity matrix. Using yet another change of variables, we can write

q̄ = LQ̄ q̄> = Q̄>L> (13)

p̄ = (L>)
−1
P̄ p̄> = P̄>(L)−1 (14)

then

H =
1

2
p̄>p̄+

1

2
q̄>Fq̄ =

1

2
P̄>(L)−1(L>)

−1
P̄ +

1

2
Q̄>L>FLQ̄ =

1

2
P̄>P̄ +

1

2
Q̄>fQ̄

going now back to the explicit non-matrix notation,

H =
1

2

∑3Nn

i=1
P 2
i +

1

2

∑3Nn

i=1
fiQ

2
i =

1

2

∑3Nn

i=1

(
P 2
i + fiQ

2
i

)
=
∑3Nn

i=1
Hi

which means that we found a form and a vectorial basis in which the nuclear Schrödinger

equation becomes separable under the harmonic oscillator approximation. In the previous

equation the fi represent the eigenvalues of F. The characteristic vibrational frequencies

in this basis are

ωi =
√
fi (15)

The sign of the eigenvalues determines what the structure actually represents (1). If

all eigenvalues are positive, then the structure corresponds to a stationary point in the

Potential Energy Surface (PES) that minimizes energy. If there is however one negative

eigenvalue, then the structure minimizes the energy in all but one direction. These saddle
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points are associated to transition states. More than two imaginary vibrational frequencies

have no application/meaning in chemistry.

We note now that if we put all the nuclear masses in a diagonal matrix M then we

can go directly from the displacement base to the Q̄ base by making

Q̄ = L>M
1
2 d̄ = W−1d̄ (16)

d̄ = WQ̄ (17)

p̄d = (W>)
−1
P̄ (18)

Here p̄d is the momentum in the displacement base. Note that the full transformation

matrix W is no longer a unitary transformation. We may furthermore diagonalize directly

the matrix E of elements
(

∂2V
∂di∂dj

)
|
di,dj=0

. This can be converted to F using

E = M
1
2FM

1
2 (19)

or

F = M− 1
2EM− 1

2 (20)

This is quite a useful procedure because one usually calculates the Hessian of the electronic

potential in the displacement base. The only thing left to do is to calculate energies and

wavefunctions for the harmonic oscillator. This can be done directly in the Q̄ space:

Hi =
1

2
P 2
i +

1

2
fiQ

2
i = −1

2
~2

∂2

∂Q2
i

+
1

2
fiQ

2
i

Putting a wavefunction in place, we assemble the secular equation

Hiψ
nuc = −1

2
~2

∂2

∂Q2
i

ψnuc +
1

2
fiQ

2
iψ

nuc = Enucψnuc

Quantum Harmonic Oscillator

In this section we will drop the superscript nuc from the wavefunction for convenience.

Furthermore, as previously noted, the fi are related to vibrational frequencies according

to 15. We will furthermore use that relation and express the harmonic oscillator in terms

of the vibrational frequency, which we generically denote ω. The first step to solving the
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above differential equation consists in rendering the equation dimensionless to simplify

the treatment. By dividing everything by ~ω[
− ~

2ω

∂2

∂x2
+

1

2

ω

~
x2
]
ψ(x) =

E

~ω
ψ(x) = εψ(x)

and then by making the change of variable y =
√

ω
~x[

− ~
2ω

(√
ω

~

)2
∂2

∂y2
+

1

2
y2

]
ψ(y) =

[
−1

2

∂2

∂y2
+

1

2
y2
]
ψ(y) = εψ(y)

which finally yields

∂2

∂y2
ψ(y) +

(
2ε− y2

)
ψ(y) = 0 (21)

This is the simplest form we have for the differential equation.

To solve the differential equation we need several steps. The first one is to determine

the asymptotic behaviour of the solution. This is either for low energy states or whenever

y is too large. In this case, (2ε− y2)≈−y2, which yields the following differential equation

∂2

∂y2
ψ(y) = y2ψ(y) (22)

that is solved by a Gaussian function of the form ψ(y) = Ae−
αy2

2 . Plugging this trial

solution in the differential equation yields

1

ψ(y)

∂2

∂y2
ψ(y) = −α

(
1− αy2

)
= y2

Since y is very large, then the solution is given approximately by α = ±1 and the general

solution to the differential equation is

ψ(y) = φ01e
− y

2

2 + φ02e
y2

2

Of the two parts of the solution, only one is ”well-behaved”, meaning that only one is

possible to normalize. As y→±∞, the second exponential will diverge. This term shall

therefore be discarded from the solution since it is not physically meaningful. In going

from the limiting behavior back to the general solution we assume that φ01 is a function

of y. The trial solution to the quantum harmonic oscillator is a function of the form

ψ(y) = φ(y)e−
y2

2 (23)
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We can now insert this function in the full differential equation to get

∂2

∂y2
φ(y)e−

y2

2 +
(
2ε− y2

)
φ(y)e−

y2

2 = 0⇔

e−
y2

2

[
∂2

∂y2
φ(y)− 2y

∂

∂y
φ(y) +

(
y2 − 1

)
φ(y)

]
+
(
2ε− y2

)
φ(y)e−

y2

2 = 0

and we finally obtain

∂2

∂y2
φ(y)− 2y

∂

∂y
φ(y) + (2ε− 1)φ(y) = 0 (24)

Since we do not know a priori how to solve this differential equation, we can try to obtain

a series-like solution, i.e.,

φ(y) =
∑∞

n=0
Cny

n

Inserting the Ansatz for φ(y) in the differential equation results in∑∞

n=2
n(n− 1)Cny

n−2 − 2y
∑∞

n=1
nCny

n−1 + (2ε− 1)
∑∞

n=0
Cny

n = 0⇔∑∞

n=0
(n+ 2)(n+ 1)Cn+2y

n − 2
∑∞

n=0
nCny

n + (2ε− 1)
∑∞

n=0
Cny

n = 0⇔∑∞

n=0
[(n+ 2)(n+ 1)Cn+2 + (2ε− 2n− 1)Cn] y2 = 0

Since the former equation must be valid for any power of y and for any value of y,

then it follows that the series above defined must have coefficients such that

Cn+2 =
2n+ 1− 2ε

(n+ 2)(n+ 1)
Cn (25)

For the resulting wavefunction to be physically meaningful it is then necessary that the

resulting power series either converges or truncates.

In the limit of very large n we see that the quotient between coefficients tends to

Cn+2

Cn
=

2n+ 1− 2ε

(n+ 2)(n+ 1)
≈ 2n

n2
=

2

n

This relates every other coefficient and the same expression is valid for both even and odd

coefficients, then we conclude that the ratio between consecutive coefficients tends to

Cn+1

Cn
=

1

n

in the limit of large n. Because the numerator has a −ε contribution, then for not-large-

enough-n the ratio between consecutive coefficients is larger than 1
n
:

Cn+1

Cn
≥ 1

n
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By applying the recursive relation we can rewrite Cn ≥ C0

n!
, where C0 is the constant

associated with the first coefficient. Plugging this result in the series, we obtain∑∞

n=0
Cny

n ≥
∑∞

n=0
C0
yn

n!
= C0e

y

Even though we did not prove that the series is convergent (nor divergent), we know

now that if we do not truncate the series for φ(y), the function will converge to a value

that cannot be normalized and is not well behaved. We therefore conclude that we must

truncate the series at some point. This is achieved by zeroing the denominator at some

order n

2n+ 1− 2ε = 0⇔ ε = n+
1

2

which yields the eigenenergies allowed for the quantum harmonic oscillator:

En = ~ω
(
n+

1

2

)
(26)

Even though we do not have yet expressions for all coefficients, we know from the

mathematical literature that φ(y) are Hermite polynomials. These can be calculated

using the recursion formulae,

Hn(y) = e
y2

2

(
y − d

dy

)n
e−

y2

2 = (−1)ney
dn

dyn
e−y (27)

The general solution for the quantum harmonic oscillator is then

ψn(x) = AnHn

(√
ω

~
x

)
e−

ω
2~x

2

where An is a normalization constant, which can be determined from the orthonormal-

ization condition:∫ +∞

−∞
ψ∗n(x)ψm(x)dx =

∫ +∞

−∞
AnHn

(√
ω

~
x

)
e−

ω
2~x

2

AmHm

(√
ω

~
x

)
e−

ω
2~x

2

dx

Changing again to the y variable we reach

AnAm

√
~
ω

∫ +∞

−∞
Hn (y) e−

y2

2 Hm (y) e−
y2

2 dx = AnAm

√
~
ω
δnm2nn!

√
π

from which

An = 4

√
ω

π~

√
1

2nn!
(28)

and

ψn(x) = 4

√
ω

π~

√
1

2nn!
Hn

(√
ω

~
x

)
e−

ω
2~x

2
(29)
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Translations and Rotations (2)

In the previous sections we solved the full nuclear Schrödinger equation. Within the

approximation used, the general force acting on the atoms in some direction is given by

∂

∂di
Eel
(
{d̄k}

)
=
∑3Nn

j=1

(
∂2Eel
∂di∂dj

)
|
di,dj=0

dj

where we express the electronic potential surface in cartesian displacements. If all atoms

feel a force in the same direction, then dj = δ and we get

∂

∂di
Eel
(
{d̄k}

)
= δ
∑3Nn

j=1

(
∂2Eel
∂di∂dj

)
|
di,dj=0

Forces on atoms should not change if we move all atoms in the same direction by the

same displacement. Therefore

δ
∑3Nn

j=1

(
∂2Eel
∂di∂dj

)
|
di,dj=0

= 0

Since we took any possible displacement, which is not necessarily zero, then we conclude

that the summation term must zero out. If we now split the indices in atoms and unit

vectors from the referential we finally reach∑Nn

l=1

∑2

β=1

(
∂2Eel

∂dk,α∂dl,β

)
|
dk,α,dl,β=0

= 0 (30)

where k and l refer to atoms and α and β refer to the axes of the referential (x, y and

z). From the equation above one gets nine invariance conditions, of which only six (five

in linear molecules) are unique. In the first set of 3 conditions, i.e. for α = β, we

obtain the invariance to translations, which can be proved to yield exactly three zero

eigenvalues in the matrix F. The respective eigenvectors describe the position of the

center of mass moving in a given direction. The other set of 3 (2) conditions, i.e. for

α 6= β, gives the invariance to rotations, which also gives rise to three (two) approximately

zero eigenvalues (rotations and vibrations are not always separable, c.f. below). The

respective eigenvectors describe rotations of the center of mass along the principal axes.

The 3Nn−6(5) non-zero eigenvalues left correspond to molecular vibration. Consequently,

we do not need to worry about translational and rotational motion when solving the

vibrational Schrödinger. External motion of the nuclei separates from internal degrees of

freedom. The decoupling between rotations and vibrations is however not always strictly

verified, as there might be Coriolis coupling that contaminates vibrational motion with
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some rotational character. However, such coupling can most of the times be neglected

for equilibrium geometries. This is indeed a test that can be used to determine how close

(far) an optimized geometry is from an equilibrium structure (1).

Since the electronic potential function is invariant to translational and rotational mo-

tion, then it is a function of 3Nn − 6(5) internal coordinates/variables. The electronic

potential Eelec defines then a hypersurface in an 3Nn − 6(5)-dimensional space. This

hypersurface is known as PES.

Zero Point Vibrational Energy (ZPVE)

From the eigenvalues of the quantum harmonic oscillator one verifies that even for the

zeroth vibrational level there is energy associated with molecular vibration (1). Therefore,

even at zero Kelvin the vibrational energy is not zero and a vibrational contribution has

to be added to electronic energies for an accurate calculation of total molecular energies.

This is the ZPVE. The ZPVE can be calculated by summing the vibrational frequencies

when the vibrational quantum number is zero, thus yielding

EZPV E =
1

2

∑3Nn−6

i=1
hωi (31)

Note that for linear molecules the index i runs over 3Nn − 5 vibrational modes.

ZPVE are sensible to isotopic abundance. Most programs calculate all energies using

directly the natural abundance of isotopes or even just the most abundant one. This

assumes that the change in energies with respect to mass is strictly linear, which is not

true for vibrational energies and the respective frequencies.

Partition Function for Harmonic Oscillator

In polyatomics, and assuming the harmonic oscillator approximation, normal vibra-

tional modes can be treated independently. This is a direct consequence of the separability

of the Hamiltonian. The total vibrational partition function of a molecule is written as

qvib =
∏

i
qvibi (32)

where i runs over the 3Nn − 5 (linear) or 3Nn − 6 (non-linear) normal modes (3). If a

vibrational mode is described by an imaginary vibrational frequency (like in a transition

state), this mode should be skipped in accordance to transition state theory (4, 5). If
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anharmonicity is to be considered, the separability of normal modes is no longer applicable.

This is however for the ”high temperature” case (the concept of high temperature is

dependent on the depth of the potential, or on the absolute value of the vibrational

frequency).

With the harmonic oscillator approximation,

qvib =
∏

i

∑∞

v=0
e
−

~ωi(v+1
2)

kBT =
∏

i
e
− ~ωi

2kBT

∑∞

v=0
e
− ~ωiv
kBT (33)

Note that the ωi are given in equation 15 as a function of the matrix F eigenvalues.

The partition function as above written is a product of geometrical series’, which for

finite temperatures converges to

qvib =
∏

i

e
− ~ωi

2kBT

1− e−
~ωi
kBT

(34)

For temperatures approaching the absolute zero, this partition function also approaches

the value of zero, which means that its natural logarithm will tend to −∞. Because of

this, entropy, Gibbs energy and the Helmoltz energy will all tend to −∞, a behavior

not in agreement with the third law of thermodynamics. This is however the natural

behaviour for the harmonic oscillator at low temperatures. To heal this problem we can

consider that the ground state of each vibrational level has zero energy and therefore

we can shift the partition function by multiplying it by e
~ωi

2kBT . Note that this is feasible

because the partition function measures the accessibility of states to a system. Therefore,

energy differences and not absolute energy values are the most important factor in this

calculation. In this case, a new vibrational partition function is obtained, which attends

the third law of thermodynamics.

qvib =
∏

i

1

1− e−
~ωi
kBT

(35)

We will however consider the full model for now and later on consider ways of correcting

for anharmonic effects. From the full partition function we can then derive

log
(
qvib
)

= −
∑

i

~ωi
2kBT

−
∑

i
log

(
1− e−

~ωi
kBT

)
(36)

Defining the characteristic vibrational temperature for the vibrational mode i as

θi =
~ωi
kB

(37)
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then

log
(
qvib
)

= −
∑

i

θi
2T
−
∑

i
log
(

1− e−
θi
T

)
(38)

From here on we can calculate the derivatives of the partition function. Since we

deal with internal motion, the derivative with respect to the system’s volume is zero.

Temperature derivatives are given by

∂

∂T
log
(
qvib
)

=
1

2

∑ θi
T 2

+
∑ θi

T 2

1

e
θi
T − 1

(39)

∂2

∂2T
log
(
qvib
)

= −
∑ θi

T 3
+
∑

i
θi

θie θiT − 2Te
θi
T + 2T

T 4
(
e
θi
T − 1

)2
 (40)

With these, we have everything needed to calculate the vibrational contribution to ther-

modynamic functions.

Limitations Harmonic Oscillator

The main limitation of the harmonic oscillator is that it allows no breaking of chemical

bonds. Instead, bonds can be indefinitely stretched and they will never break. This is

naturally unphysical (1). The consequence is that for an harmonic oscillator all energy

levels are equally spaced. In a real oscillator, the energy between different vibrational

quantum levels decreases with quantum number. Furthermore, contrary to the harmonic

oscillator, a real oscillator has a finite number of energy levels. A consequence of the

two limitations is that vibrational frequencies calculated using the harmonic oscillator

approximation are always larger than the real vibrational frequencies. This difference

can be as large as 3% just from the harmonic oscillator approximation. In order to

calculate realistic vibrational frequencies from first principles one must scale calculated

frequencies by a method and basis set specific factor. The literature has many publications

on recommended scaling factors that can be used (see for instance (6)).

Low Vibrational Frequencies

The degree of (an)harmonicity of a given vibrational mode depends on the depth of the

potential well associated with the vibrational mode. The lower the vibrational frequency,

the shallower the potential well becomes, and anharmonicity effects get stronger. For the
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low-frequency vibrations, the harmonic oscillator approximation is no longer appropriate.

Not only is the model inadequate, it blows up the calculation of internal energies and

entropies: the former becomes infinitely negative and the latter infinitely positive.

SHO = R

[
hω

kBT (ehω/kBT − 1)
− log

(
1− e−hω/kBT

)]
(41)

Note that the same does not apply to enthalpies. If we write down the enthalpy for a

single mode of a harmonic oscillator

HHO = kBθ

(
1

2
+

1

eθ/T − 1

)
and MacLaurin-expand the expression we see that

HHO≈kB
(
T +

θ2

12T
+ ...

)
which in the limit of θ = 0 falls to the value of kBT .

Vibrational modes with low frequencies are typically associated with internal rotations

of molecular groups, which may take place in a hindered fashion, if there is a high energy

energy barrier to be overcome, or simply freely. The degree of hindered- to free-rotor

of a given internal rotation is solely determined by the associated vibrational frequency.

Because of the low values of the associated frequency, these modes are quickly affected

by anharmonicity effects, but they also reach quicker the classical behaviour. Whenever

the temperature is high enough, Pitzer suggested to simply treat internal degrees of

freedom simply as being classical. The harmonic oscillator model should be replaced by

the free-rotor and contribution of one such vibrational mode to the internal energy is then

given (7–10)

Ufree−rotor =
1

2
RT (42)

while for entropies we get instead

Sfree−rotor = R

[
1

2
+ log

(√
8π3IintkBT

σinth

)]
(43)

Here, Iint and σint are reduced inertias and symmetry numbers for the internal rotation.

In his work, Pitzer also considered a more accurate treatment for a hindered rotor.

Perhaps the most common example is the rotation along the C −C bond of a methyl

group in ethane. It is well known that the staggered structure of ethane corresponds to a

minimum in the potential surface, since it minimizes the repulsion between the hydrogen
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atoms. On the other hand, the eclipsed structure maximizes the repulsion between hydro-

gen atoms. This structure corresponds to a saddle point for the internal rotation in the

molecule. Other cases with low-vibrational frequencies are the van der Waals complexes

describing two weakly interacting molecules. Because of the weak interaction, the poten-

tial is highly anharmonic and the associated vibrational motion acquires such behaviour.

Other consequences are that many local minima may exist, instead of a single equilibrium

structure. The barriers between these minima are consequently also low and complex

tunnel effects may occur (2).

Internal rotations might also cause problems in geometry optimizations, which end

in a false stationary point. The internal rotations have typically an activation barrier

associated with them, which is periodic over the rotation angle, and the optimizer falls

then to the transition structure instead of the actual minimum. To solve this problem in

typical geometry optimizations, one may add a fraction of the vibrational perturbation

to the actual geometry and reoptimize the structure with tighter convergence criteria.

Figure 1: Sketch of ethane’s potential surface for the rotation of one methyl

group. Marvin 19.27, 2019 was used for drawing chemical structures, ChemAxon

(http://www.chemaxon.com)”. The picture was furthermore modified to include the

shape of the potential.

The Grimme Correction for Free-Rotation

Grimme proposed a simple and black-box like correction for ideal gas entropies (11),

which consists on an interpolation between the free-rotor and harmonic oscillator partition

functions. For that one starts by defining a moment of inertia for a free-rotor with the
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same frequency as the vibrational mode

µ =
h

8π2ω
(44)

which we restrict to reasonable values using

µ
′
=

µBavg

µ+Bavg
(45)

These modified moments of inertia are defined for every vibrational mode in the molecule.

In the equation above, Bavg is an average molecular moment of inertia, which we calculate

as the geometric mean of the eigenvalues of the inertia matrix. By using a weight function

w(ω) =
1

1 +
(
ω0

ω

)a (46)

the interpolation between models is done via

Svib = w(ω)SHO + [1− w(ω)]Sfree−rotor (47)

Recommended values for a = 4 and ω0 should be between 50 and 150cm−1. We set

ω0 = 75cm−1.

For consistency we calculated all the thermodynamic functions for the free-rotor, which

we then used to interpolate in the same manner as entropy.
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